Markov Models for Image Labeling

نویسندگان

  • S. Y. Chen
  • Hanyang Tong
  • Carlo Cattani
چکیده

Markov random field MRF is a widely used probabilistic model for expressing interaction of different events. One of the most successful applications is to solve image labeling problems in computer vision. This paper provides a survey of recent advances in this field. We give the background, basic concepts, and fundamental formulation of MRF. Two distinct kinds of discrete optimization methods, that is, belief propagation and graph cut, are discussed. We further focus on the solutions of two classical vision problems, that is, stereo and binary image segmentation using MRF model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

­­Image Segmentation using Gaussian Mixture Model

Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...

متن کامل

IMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL

  Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...

متن کامل

Semantic Labeling of SAR Images with Hierarchical Markov Aspect Models

Scene segmentation and semantic labeling of Synthetic Aperture Radar (SAR) images is one of the key problems in interpreting SAR data. In this paper, a new approach for semantic labeling of SAR imagery is proposed based on hierarchical Markov aspect model (HMAM) with weak supervision. The motivation for this work is to incorporate the multiscale spatial relation between adjacent image patches i...

متن کامل

Markov Models and Extensions for Land Cover Mapping in Aerial Imagery

Markov models are well-established stochastic models for image analysis and processing since they allow one to take into account the contextual relationships between image pixels. In this paper, we attempt to methodically review the use of Markov models and their extensions for Land Cover mapping problem in aerial imagery according to available literature and previous research works. A new Mark...

متن کامل

SAR Image Labeling with Hierarchical Markov Aspect Models

Scene segmentation and semantic labeling are important problems in SAR image interpretation. This paper proposes an efficient SAR imagery labeling method based on aspect model which can be learnt from keywords-labeled training data directly. Furthermore, a novel hierarchical Markov aspect model (HMAM) is presented by building aspect model on quadtree. HMAM outperform both aspect model and hiera...

متن کامل

Best Labeling Search for a Class of Higher Order Gibbs Models

Many image recognition tasks can be expressed in terms of searching for the maximum a posteriori labeling in some statistical model. We introduce a class of higher order Gibbs models, also known as Markov random fields, for which this task is solvable in polynomial time. Received December 29, 2003 1

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014